SynBio in the spotlight at Harvard Mag:
...Traditional genetic engineering amounted more or less to biological cut-and-paste: scientists could, for instance, transfer a cold-tolerance gene from an Arctic fish into a tomato. Synthetic biology aims for a more radical reorganization. Its organisms are built to be biological machines, with DNA and proteins standing in for circuit components or lines of computer code. In combination, the biological parts perform functions unknown to nature: processing signals, producing new chemicals, storing information.
“I like to say that biological carbon is the silicon of this century,” says Pamela A. Silver, Adams professor of biochemistry and systems biology at Harvard Medical School (HMS; see “Biology in This Century,” September-October 2011, page 72). Just as computers revolutionized the past hundred years, she says, biology is poised to transform the next. “The building of biological machines and biological computers—all of that should soon become a reality.”
To a certain mind, a cell already resembles a tiny, complex machine. It takes in chemicals from the environment and performs reactions to build new biological parts; it monitors signals and turns genes on and off in response. Cells have been compared to computers, to factories, to automatons. For a synthetic biologist with such complex systems already at hand, the task is to identify and manipulate the appropriate parts. “Many of the biomolecular components we’re not building from scratch,” says James J. Collins, Warren Distinguished Professor at Boston University and founding core faculty member at Harvard’s Wyss Institute for Biologically Inspired Engineering. “We’re taking native systems and then modifying them.”
Understanding and manipulating this elaborate machinery is a tough job. “I think of it as if some alien intelligence just dropped onto us all their intellectual property without documentation,” says George Church, Winthrop professor of genetics at HMS (see “DNA as Data,” January-February 2004, page 44). There’s no direct biological equivalent of a capacitor or the delete command, and synthetic biologists must creatively recombine existing biological parts in order to build new functions...
@ Harvard scholars explore transforming biology into an engineering discipline | Harvard Magazine Sep-Oct 2014:
No comments:
Post a Comment